THE BISBENZYLISOQUINOLINE ALKALOIDS OF STEPHANIA SUBEROSA

Amarendra Patra,¹ Alan J. Freyer, Hélène Guinaudeau,² Maurice Shamma,

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

BAMRUNG TANTISEWIE, and KALAYA PHARADAI

Department of Pharmacognosy, Chulalonkorn University, Bangkok 10500, Thailand

ABSTRACT.—Five new bisbenzylisoquinoline alkaloids were obtained from *Stephania suberosa*. These are (+)-2-norcepharanthine (2), (+)-cepharanthine 2'- β -N-oxide (3), (+)-stephasubine (4), (+)-norstephasubine (5), and stephasubinine (6). They are accompanied by the known (+)-cepharanthine (1) which is the main alkaloid.

The vine Stephania suberosa Forman (Menispermaceae) is a rich source of alkaloids, and the present paper will be concerned with its content of bisbenzylisoquinolines (1,2).

Besides the known (+)-cepharanthine (1), which is the major bisbenzylisoquinoline (1), five dimers were obtained, all of which are new and are structurally related to cepharanthine whose detailed ¹H-nmr spectrum, confirmed by spin decoupling experiments, has been summarized around expression 1.

The first new alkaloid to be characterized was (+)-2-norcepharanthine (2), $C_{36}H_{36}N_2O_6$. The secondary amine function was first suggested by a mass spectral molecular weight which was 14 m.u. less than for cepharanthine. A strong molecular peak m/z 592 (78%) was flanked by a base peak m/z 591—a pattern often encountered with bisbenzylisoquinolines bearing a secondary amine function (3). Another important peak, m/z 365 (59%), represented the upper half of the molecule. As expected for a bisbenzylisoquinoline incorporating 7-8' and 11-12' ether linkages, the mass spectrum also showed peaks m/z 486 and 485 due to the (M-106)⁺ and (M-107)⁺ ions (4).

The ¹H-nmr spectrum of (+)-2-norcepharanthine, indicated around structure **2**, is very close to that for **1**. The most obvious difference was the absence of an upfield *N*methyl singlet near δ 2.56 and the displacement of the broad H-1 singlet from δ 3.60 in cepharanthine (**1**) to δ 4.32 in the nor analog. Such a pattern is regularly observed whenever an *N*-methyltetrahydrobenzylisoquinoline in the monomeric or dimeric form is compared with the corresponding secondary amine (3). The structure of the new alkaloid was then confirmed by its *N*-methylation using formaldehyde-formic acid to (+)-cepharanthine (**1**).

¹Permanent address: Department of Chemistry, University College of Science, 92 Acharya Prafulla Chandra Road, Calcutta 700009, India.

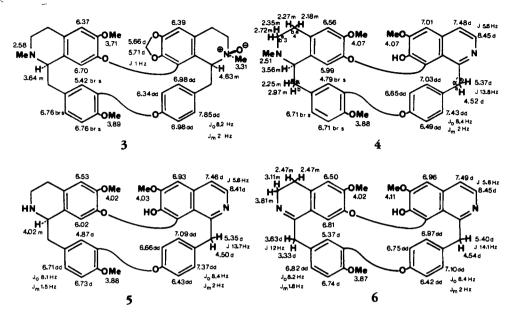
²Permanent address: Faculté de Médecine et de Pharmacie, Université de Limoges, 87025 Limoges Cedex, France; or CNRS, UA 496, Centre d'Etudes Pharmaceutiques, 99290 Chatenay-Malabry, France.

The second new alkaloid was (+)-cepharanthine $2'-\beta$ -N-oxide (**3**), $C_{37}H_{38}N_2O_7$. The mass spectrum showed a small molecular peak m/z 622 (8%), together with a somewhat stronger m/z 620 peak. Such an $(M-2)^+$ ion is often encountered in connection with bisbenzylisoquinoline N-oxides (3). Present also was a strong m/z 606 peak due to net loss of oxygen from the molecular ion. An intense m/z 379 peak represented the top half of the dimer, i.e., rings A, B, A', and B', while an m/z 190 peak corresponded to the doubly charged analog.

The ¹H-nmr spectrum was again very close to that of cepharanthine as far as the aromatic protons and the aromatic substituents were concerned. A remarkable difference, however, prevailed with the absorptions for the right hand 2'-N-methyl group and the adjoining H-1' which were both shifted downfield. The 2'-N-methyl singlet at δ 3.31 and the H-1' broad singlet at δ 4.63 are characteristic of a *trans*-relationship between the N-oxide oxygen and H-1' (3). This *trans*-relationship was further confirmed by an nOe study (5) which showed that irradiation of the δ 3.31 N-methyl singlet resulted in enhancement of the H-1' signal at δ 4.63.

The remaining three new bisbenzylisoquinolines are closely related to each other and are all phenolic.

(+)-Stephasubine (4, $C_{36}H_{34}N_2O_6$, shows a strong mass spectral molecular ion m/z 590 (76%), while m/z 589 is the base peak. The only other important peak is the doubly charged molecular ion m/z 295 (18%). The fact that the upper part of the dimer is not observed in the mass spectrum immediately suggested that an imine or aromatic ring B (or B') was present. This suspicion was reinforced by the uv shift suffered by the dimer upon acidification (6).


The ¹H-nmr spectrum displayed mutually coupled signals at δ 7.48 and 8.45 ($J_o = 5.6$ Hz) due to the presence of a substituted pyridine system. Conspicuously present were two doublets at δ 4.52 and 5.37, with a large coupling constant at 13.8 Hz, which represented the two geminal protons of the benzylic methylene adjacent to the pyridine ring. The presence of the H-1 broad singlet upfield at δ 3.56, accompanied by an N-methyl signal at δ 2.51, argued convincingly in favor of placing the pyridine system on the right-hand side of the dimer (3).

The structure assignment was then further ascertained by a complete spin decoupling and nOe analysis; the more important of the ¹H-nmr values are quoted in the Experimental section.

Our fourth new alkaloid is (+)-norstephasubine (5), $C_{35}H_{32}N_2O_6$, which showed a mass spectral molecular ion 14 units less than for stephasubine (4), while the general fragmentation pattern was very similar to that for 4. The ¹H-nmr spectrum of (+)-norstephasubine (5) is also close to that of 4, except for the absence of an N-methyl signal, and the downfield displacement of H-1 from δ 3.56 to 4.02. This shift is typical for the replacement of a N-methyl group by NH (3). Finally, N-methylation of 5 provided (+)-stephasubine (4).

The fifth new alkaloid at our disposal was stephasubimine (6) whose molecular composition, $C_{35}H_{30}N_2O_6$, indicated two hydrogens less than in norstephasubine (5). The ¹H-nmr spectrum bears distinct similarities to those of dimers 4 and 5. But a noticeable difference is the presence of two extra doublets at δ 3.33 and 3.63 (J_{gem} =12 Hz), attributable to the benzylic α -methylene protons of a dihydrobenzylisoquinoline. The structure assignment was then complemented by the finding that NaBH₄ reduction of 6 provided norstephasubimine (5).

Stephasubine (4), norstephasubine (5), and stephasubimine (6) are relatively rare examples of bisbenzylisoquinolines incorporating an aromatic isoquinoline moiety. They all possess a methoxyl at C-6' and a hydroxyl at C-7'. The accompanying cepharanthine (1), norcepharanthine (2), and cepharanthine-2'- β -N-oxide (3) include

a tetrahydrobenzylisoquinoline as the right-hand moiety of the dimer. Interestingly, the C-6', C-7' substituent is now a methylenedioxy group.

EXPERIMENTAL

ISOLATION.—The dried, powdered tuberous roots (1.8 kg) of *S. suberosa* were purchased in the Bangkok main market under the name "borapet pungchang." They are usually used in native medicine as a tonic, carminative, and expectorant. The powder was extracted with EtOH at room temperature. The solvent was evaporated and the residue (200 g) treated with 5% HOAc. The mixture was filtered. The extract was basified with NH₄OH and extracted with CHCl₃ to give an alkaloidal fraction (22 g). This was chromatographed on a column prepared by using 1.3 kg silica gel (70-200 mesh) in CHCl₃. Elution of the chromatographic column using CHCl₃ containing increasing amounts of MeOH provided cepharanthine (1), 9 g; 2-norcepharanthine (2), 30 mg; stephasubimine (6), 12 mg; stephasubine (4), 6 mg; norstephasubine (5), 12 mg; and cepharanthine-2'- β -N-oxide (3), 7 mg. Final purification was by preparative tlc on silica gel plates using the system CHCl₃-MeOH-NH₄OH (80:20:trace). All compounds are amorphous; ¹H-nmr spectra are at 360 MHz in CDCl₃.

(+)-NORCEPHARANTHINE (**2**).—m/z 592 (**M**⁺, 78), 591 (100), 486 (4), 485 (10), 365 (59), 351 (39), 349 (40), 206 (20), 192 (18), 183 (32), 160 (31); [α]D +318° (c 0.25, MeOH).

N-METHYLATION OF 2.—The nor compound 2(3 mg) was refluxed with an aqueous formaldehyde (1 ml) and HCOOH (2 ml) for 12 h. Work-up led to 1 in near quantitative yield.

(+)-CEPHARANTHINE 2'-B-N-OXIDE (3).—m/z 622 (M⁺, 8), 621 (17), 620 (31), 606 (95), 605 (98), 592 (19), 591 (29), 516 (4), 380 (25), 379 (97), 366 (24), 365 (98), 190 (100), 183 (23), 174 (67); $[\alpha]D + 152^{\circ}$ (c 0.22, MeOH).

(+)-STEPHASUBINE (4).— λ max (MeOH) 240, 287, 337 nm (log ϵ 4.56, 3.61, 3.43); λ max (MeOH+H₃O⁺) 235, 264, 290 sh, 321, 368, 374 nm (log ϵ 4.35, 4.41, 3.69, 3.39, 3.48, 3.48); *m/z* 590 (M⁺, 76), 589 (100), 575 (26), 295 (18), 190 (5), 174 (24), 145 (13), 144 (13); $\Delta \epsilon$ (nm) 0 (270), +64 (245), +4 sh (218), negative tail; [α]D +339° (c 0.09, MeOH).

STEPHASUBINE (4) NOEDS.—OMe-6 \Rightarrow H-5; H-5 \Rightarrow H-4a; OMe-6' \Rightarrow H-5'; H-5' \Rightarrow H-4'; H-8 \Rightarrow H-1; H-1 \Rightarrow 2-NMe; H-8 \Rightarrow H-10; H-14 \Rightarrow H- α b; H-8 \Rightarrow H- α a; OMe-12 \Rightarrow H-13; H-14' \Rightarrow H- α 'b; H-10' \Rightarrow H- α 'a.

(+)-NORSTEPHASUBINE (**5**).— λ max (MeOH) 240, 286, 338 nm (log \in 4.53, 3.62, 3.42); λ max (MeOH+H₃O⁺) 235, 264, 321, 368, 375 nm (log \in 4.30, 4.36, 3.32, 3.40, 3.39); *m*/z 576 (M⁺, 72), 575 (100), 561 (20), 545 (29), 288 (15), 190 (8), 174 (25), 146 (16), 145 (18); [α]D +309° (c 0.09, MeOH). *N*-Methylation of **5** as described above led to **4**.

STEPHASUBIMINE (**6**).— λ max (MeOH) 242, 281, 323 nm (log ϵ 4.64, 3.91, 3.70); λ max (MeOH+H₃O⁺) 264, 307, 362, 368 nm (log ϵ 4.57, 4.02, 3.92, 3.91); *m*/*z* 574 (M⁺, 100), 559 (24), 206 (43), 192 (10).

REDUCTION OF STEPHASUBIMINE (6).—Compound **6** (2 mg) was dissolved in MeOH (1 ml) and the solution treated with a pinch of NaBH₄. The mixture was stirred for 12 h and then worked up to afford **5** (tlc, ¹H nmr, ms) in near quantitative yield.

ACKNOWLEDGMENTS

This research was supported by grant CHE-8511984 from the National Science Foundation. A.P. was the recipient of a UNESCO/UNDP (India) fellowship.

LITERATURE CITED

- 1. K.P. Guha, B. Mukherjee, and R. Mukherjee, J. Nat. Prod., 42, 1 (1979).
- 2. P.L. Schiff, Jr., J. Nat. Prod., 46, 1 (1983).
- 3. H. Guinaudeau, A.J. Freyer, and M. Shamma, Nat. Prod. Rep. (in press).
- J. Baldas, I.R.C. Bick, T. Ibuka, R.S. Kapil, and Q.N. Porter, J. Chem. Soc., Perkin Trans. 1, 592 (1972).
- 5. L.D. Hall and J.K.M. Sanders, J. Am. Chem. Soc., 102, 5703 (1980).
- 6. M. Shamma, "The Isoquinoline Alkaloids," Academic Press, New York, 1972, pp. 84-85.

Received 5 September 1985